Posted on

How does a 3 way pressure reducing valve work?

Reading Time: 7 minutes

Understanding 3-Way Valves

Basics of 3-Way Valves

A 3-way valve is designed to control the flow of a liquid or gas in three different directions. It features three openings for fluid to flow through, allowing the valve to divert the flow between three ports. This design enables you to either merge or split the flow of fluid, making it versatile for various applications (Plumberstar).

One key advantage of a 3-way valve over a 2-way valve is the additional port, which provides an alternate path for fluid travel. This allows fluid to either exit the valve from more than one point or enter the valve from multiple points, offering greater flexibility in controlling fluid flow (ValveMan).

Types of 3-Way Valves

There are several types of 3-way valves, each designed for specific functions and applications. The two primary types are the T-port valve and the L-port valve.

  1. T-Port Valve: The T-port valve can merge two inlet flows into one outlet port or split one inlet into two outlet flows. This makes it suitable for applications requiring the splitting or combining of gas and liquid flows. The T-port valve enables straight flow, mixing flow, and diverting flow based on the system’s requirements (DomBor).
  2. L-Port Valve: Also known as diverter or L-pattern valves, L-port valves have two outlet ports and a single inlet port. This configuration allows fluid to be diverted in one direction at a time, making it ideal for applications where fluid needs to be directed from one source to two separate destinations (Pumps & Systems).
Type of 3-Way ValveConfigurationApplications
T-Port ValveCan merge two inlet flows into one outlet or split one inlet into two outletsSuitable for splitting or combining gas and liquid flows
L-Port ValveTwo outlet ports and one inlet port; allows fluid diversion in one directionIdeal for directing fluid from one source to two separate destinations

Understanding these types of 3-way valves and their functionalities will help you choose the right valve for your specific needs. For more detailed information on what a 3-way valve is used for, visit what is a 3-way valve used for.

Learn more about the differences between 2-way and 3-way solenoid valves in our article on what is the difference between a 2-way and 3-way solenoid valve.

Applications of 3-Way Valves

Industrial Uses

Three-way valves are versatile components used in a variety of industrial settings. They are essential for managing fluid flow and are commonly found in:

  • Industrial Boilers: Used to control the flow of steam and hot water.
  • Chemical Mixing Pipelines: Ideal for combining fluids with varying properties.
  • Steam Collection and Distribution Systems: Efficiently direct steam to different parts of a system.
  • Air Conditioning Devices: Regulate coolant flow to maintain optimal temperatures.
  • Complex Piping Systems: Used in systems with primary and secondary loops for efficient fluid management.

Their unique ability to mix fluids from more than one inlet or divert flow direction makes them indispensable in many process industries such as automotive, chemical, food and beverage, power generation, marine, and water treatment (Pumps & SystemsBaelz North America). For more detailed information on the differences between two-way and three-way valves, visit our article on what is the difference between a 2-way and 3-way solenoid valve.

Benefits and Limitations

Benefits

Three-way valves offer several advantages that make them a preferred choice for many industrial applications:

  • Cost-Effective: They eliminate the need for multiple two-way valves, reducing overall costs.
  • Efficiency: Capable of mixing and diverting fluids, which simplifies complex piping arrangements.
  • Versatility: Suitable for a wide range of applications due to their ability to handle different types of fluids and gases.
  • Space-Saving: Reduce the number of valves required, saving space in piping systems.

Limitations

Despite their advantages, three-way valves also have some limitations:

  • Complexity: More complex than two-way valves, requiring more careful planning and installation.
  • Maintenance: May require more frequent maintenance due to the number of moving parts.
  • Flow Control: Less precise flow control compared to some specialized two-way valves.
Feature3-Way Valve2-Way Valve
CostModerateLow
EfficiencyHigh (for mixing/diverting)High (for direct flow)
VersatilityHighModerate
ComplexityHighLow
Flow ControlModerateHigh

For additional insights on how three-way valves operate and their specific applications, explore our guide on what is a 3-way valve used for.

Understanding the benefits and limitations of three-way valves can help you make an informed decision about their use in your industrial applications. For more on selecting the right valve for your needs, check out our detailed articles on the 3 way solenoid valve.

Operation of 3-Way Valves

Understanding how 3-way valves function is essential for their effective use in agriculture, particularly in crop spraying. Exploring both manual and automated options, as well as the materials and construction of these valves, can help you make informed decisions for your farming needs.

Manual and Automated Options

Three-way valves can be manually operated or automated using electric, pneumatic, or hydraulic actuators, depending on the desired level of valve automation, responsiveness, and actuation forces required (Pumps & Systems).

  • Manual Operation: Ideal for simple systems where frequent adjustments are not necessary. Manual valves are cost-effective and easy to use.
  • Automated Operation: Automated valves offer greater precision and ease of use, especially in complex systems. They can be controlled remotely and adjusted quickly.
Type of OperationAdvantagesDisadvantages
ManualCost-effective, easy to useRequires manual adjustment, less precise
AutomatedPrecise control, remote operationHigher cost, requires power source

Materials and Construction

Three-way valves are constructed from various materials, each suitable for different applications based on properties such as corrosion resistance and durability (Plumberstar).

  • Brass: Commonly used for general applications due to its durability and resistance to corrosion.
  • Stainless Steel: Ideal for high-pressure systems and corrosive environments.
  • PVC: Lightweight and resistant to chemicals, suitable for low-pressure systems.
  • Cast Iron: Durable and cost-effective, used in heavy-duty applications.
  • Bronze: Resistant to saltwater corrosion, often used in marine applications.
  • PTFE (Teflon): Excellent chemical resistance, used in highly corrosive environments.
MaterialPropertiesApplications
BrassDurable, corrosion-resistantGeneral use
Stainless SteelHigh-pressure, corrosion-resistantHigh-pressure, corrosive environments
PVCLightweight, chemical-resistantLow-pressure, chemical applications
Cast IronDurable, cost-effectiveHeavy-duty
BronzeSaltwater-resistantMarine applications
PTFEChemical-resistantHighly corrosive environments

For more detailed information on selecting the best material for your 3-way valve, visit our guide on what is the difference between a 2-way and 3-way solenoid valve.

Choosing the right 3-way valve for your agricultural needs involves considering both the type of operation and the material. By understanding these aspects, you can optimize your crop spraying systems effectively. For further insights on the applications of 3-way valves, check out our article on what is a 3-way valve used for.

Practical Implementations

Mixing and Diverting Fluids

A 3-way valve is a versatile device used extensively in agriculture and crop spraying for tasks such as mixing and diverting fluids. These valves can direct the flow of fluids in multiple directions, which is essential for efficient system operations.

Mixing Fluids: In agricultural settings, a 3-way valve can mix different types of chemicals or nutrients with water before spraying crops. This ensures that the mixture is consistent and effective in treating the plants. The valve can combine fluids from two inlets into a single outlet, facilitating precise control over the mixture.

Diverting Fluids: A 3-way valve is also used to divert the flow of fluids to different destinations. For example, it can switch the flow from a storage tank to a spraying nozzle or from one pipeline to another, depending on the required operation. This ability to control fluid direction makes it a critical component in irrigation and spraying systems.

ApplicationFunctionExample
Mixing FluidsCombines fluids from two inletsMixing fertilizers with water
Diverting FluidsRedirects fluid flow to different outletsSwitching between storage tanks and nozzles

For more detailed information on the use of 3-way valves in agriculture, you can refer to our guide on 3 way solenoid valve.

Comparing T-Port and L-Port Valves

When selecting a 3-way valve for your agricultural needs, it’s important to understand the differences between T-port and L-port configurations. Each type has unique functionalities suited for specific applications.

T-Port Valves: These valves are excellent for applications requiring the splitting of fluids from one source into two different directions simultaneously. They are often used for mixing services in industrial applications and provide constant flow control. This makes T-port valves ideal for situations where you need to mix or divert fluids continuously.

L-Port Valves: In contrast, L-port valves are designed to divert fluid flow to one direction at a time. They are suitable for applications where you need to switch between two different outlets, such as alternating between two different spraying nozzles or tanks. L-port valves provide precise control over fluid direction, making them a preferred choice for targeted fluid diversion.

Valve TypeFunctionApplication
T-Port ValveSplits fluid flow in two directions simultaneouslyMixing fertilizers and pesticides
L-Port ValveDiverts fluid flow to one direction at a timeSwitching between different spraying nozzles

For more insights on the differences between these valve types, check out our article on what is the difference between a 2-way and 3 way solenoid valve.

By understanding the practical implementations of 3-way valves, you can make informed decisions about the best type of valve for your agricultural operations. Whether you need to mix fluids or divert flow, T-port and L-port valves offer the flexibility and control required for efficient crop spraying and irrigation systems. Visit our comprehensive guide on what is a 3-way valve used for for more details.

Posted on

What is the difference between a solenoid valve and a motorized valve?

Reading Time: 6 minutes

Importance of Valve Maintenance

Taking care of your motorized valves is like giving your farm a regular health check-up—it’s just plain smart. Let’s break down why keeping those valves in tip-top shape is a big deal for your farming hustle.

Keep Valves from Fizzling Out

Imagine finding out your machinery’s throwing a tantrum when you’re knee-deep in the harvest season. Regular maintenance is your safety net, making sure these valves don’t quit on you when you need ’em most. We’re talking about preventing nasty surprises—like everything grinding to a halt or unexpected repair bills pulling at your wallet. A little TLC now means your valves might just stick around longer, saving you cash on replacements. That’s more dough back in your pocket over time.

Benefits of Regular MaintenanceImpact
Thwart FailuresStay clear of pricey fixes and downtime
Prolong LifespanHelps skip frequent swaps
Save MoneyPocket-friendly in the long haul

Forgot About It? That’s a Hazard

Skipping maintenance? Bad idea. It’s not just about lost dollars; it’s about playing it safe, too. Ignore those valves, and next thing you know, you’ve got leaks or spills—bad news for you and Mother Nature. Keeping an eye on them keeps these dangers at bay, giving you peace of mind on the job.

Get More Done with Happy Valves

A well-oiled valve is a happy valve—and a happy valve means you’re saving energy ’cause it runs smoother. Less friction means the whole operation’s quicker and leaner, not to mention greener. Your setup runs like a dream, and you get the most out of every action you take out in the fields.

Craving more insights? Check out our articles on how to pick and maintain your motorized valves wisely, so you always hit the mark with their steaming hot performance.

Types of Actuators

Let’s dig into the nitty-gritty of actuators. They’re the muscle behind automated motorized valves that keep your farm running smoothly. See what fits your turf the best with these main contenders:

Electric Actuators

Electric actuators are your go-to for light-duty valve exercises. They’re the easy-breezy option—quick to set up, quiet as a whisper, and they sip power like a fine wine. Equipped with limit switches, they know when to stop—when the valve’s wide open or shut tight. Perfect for when you want spot-on control, you’ll find them hanging out in HVAC systems and water plants, doing their thing in style with automated precision.

Pneumatic Actuators

Pneumatic actuators thrive on compressed air. They’re the budget-friendly pals you want around when you’ve got loads of valves to automate. Fast to the draw and full of strength, they’re built for handling the tough stuff in pipes. Thick media, slurries, high-pressures? No problem. Steam pipelines? Even better.

Hydraulic Actuators

When we’re talking heavy-duty, hydraulic actuators don’t mess around. Strong as an ox, these are made to last through rough and tumble settings. Ideal for pipeline adventures where heavy lifting is the norm, they deliver the power needed without flinching.

Electro-Hydraulic Actuators

Electro-hydraulic actuators are like the overachievers in the family, blending the best of both worlds—electric power for precision and hydraulic oomph for force. You’ve got an electric motor pushing a hydraulic pump, giving them strength and finesse. Minimal upkeep and no worries with noise—they’re as silent as they are strong.

To make it easy for you, here’s a quick rundown:

Actuator TypePower SourceForceBest ForMaintenance
ElectricElectricModerateLight-duty, precise controlLow
PneumaticCompressed airHighViscous media, high-pressureModerate
HydraulicHydraulic fluidVery highTough jobs needing a lot of forceHigh
Electro-HydraulicElectric/HydraulicVery highPrecision tasks that aren’t lightLow

Picking the right actuator boils down to what your setup craves and what your agricultural efforts demand. Curious for more tidbits? Hop over to our page about motorized valves and expand your knowledge even further.

Motorized Control Valves by Danfoss

Where Danfoss MCVs Do Their Thing

Danfoss Motorized Control Valves (MCVs) are the superheroes of control valves, built to bring reliability to your heating and cooling worlds. Picture them strutting their stuff in:

  • District heating and cooling
  • HVAC systems
  • Central heating setups

These motorized valves are all about keeping things comfy, whether you’re lounging at home or out on the farm. They finesse the temperature like a maestro, making your heating and watering plans a breeze.

What’s in the Danfoss Goodie Bag

Danfoss throws quite the party with its selection of control valves and actuators. Whether you’re dealing with hot water at home or tackling district heating, they’ve got your back with some slick options.

Product LineApplicationWhat Makes It Tick
AMZ 112/113 ActuatorsHVAC, Central HeatingUser-friendly, reliable, a cinch to set up
AME 435Handles both AC and DC systemsOffers flexible control tweaks and voltage input flair
AME 655/658/659Plays nice with AC and DC, tooLets you pick current signals with a simple switch

These valves aren’t one-size-fits-all. They come in all shapes, sizes, and materials to suit what you’re up to. Dig into Types of Actuators if you’re curious about all the flavors on offer.

Keeping It Safe with Danfoss Actuators

Playing it safe is key when you’re dealing with these gadgets. Danfoss takes the cake with smart features that keep things smooth even if the power takes a nap.

  • Overload Protection: Keeps everything running like it should, even when things get hairy.
  • Spring Down (SD) and Spring Up (SU) Modes: These sneaky modes make sure the actuator moves to the right spot when the lights go out, saving the day before things get dicey.

Learn more about how Danfoss keeps it safe, and check out the fine print on SD and SU versions for all the deets.

Why Danfoss Actuators Rock

Pop the hood on Danfoss actuators and you’ll find they’re all about going the extra mile:

  1. Energy Jive: They’ve got the moves to save on energy.
  2. Rock-Solid Reliability: Built to run like a charm with hardly any hiccups.
  3. Simple Setup: Friendly design means you get them up and running without breaking a sweat.

Know what you’re getting with Danfoss Motorized Control Valves and how they fit your farmyard plans. Swing by motorized valves for more wisdom and tips, and get the gear that’ll keep things flowing just right.

Selecting the Right Valve

Picking out the perfect valve for your farm setup ain’t a walk in the park, but don’t worry, we’re here to lay it all out for you, easy-peasy. This section is about helping you through the must-know stuff when choosing the right motorized valves.

Sizing and Capacity Considerations

When it comes to motorized valves, size does matter. Picking the right size and capacity is like finding the right pair of boots—it just has to fit. If it doesn’t match your system’s flow, you’re headed for trouble.

What to CheckWhy It Matters
Flow RateNeeds to manage the system’s max flow without breaking a sweat
PressureShould handle the toughest pressure the system throws at it
TemperatureMust chill with the high and low temps in your setup

Getting your valve to match these specifics keeps it running like a champ and extends its life.

System Requirements

Now, you gotta know what your system needs. The basics: pressure, temperature, and flow rate. A happy valve is one that fits snugly into these parameters (Valve Automatic).

  • Pressure: The valve shouldn’t buckle under pressure—literally.
  • Temperature: Needs to handle all the heat and chill your operation doles out.
  • Flow Rate: It’s gotta manage the biggest gush without breaking a sweat.

Material Compatibility

Next, think about material compatibility—it’s all about making sure the valve won’t flake on you and start leaking. The material has to play nice with whatever’s flowing through it, be it air, water, or steam (Valve Automatic).

Type of StuffMatching Valve Material
WaterStainless Steel, Brass
AirAluminum, Stainless Steel
SteamStainless Steel, Cast Iron

The right material choice means no rusty surprises or wear outs that mess with your operation.

Electrical Requirements

Motorized valves need juice to do their thing. Getting the voltage and current just right is crucial (Valve Automatic).

  • Voltage: It’s gotta jive with what your system’s serving up.
  • Current: Pick one that can handle the juice your system gives.

Set this up right, and your valve will work its magic without frying your electrical system. For more electrical deets, check out our article on motorized valves.

So, when you weigh up these factors—size, system needs, materials, and electrical bits—you’re well on your way to picking out the perfect motorized valve for your farm’s needs.

Posted on

What makes the solenoid to activate?

Diagram showing the cross-section of a solenoid valve, highlighting components like the solenoid coil, plunger, and magnetic field for fluid control.
Reading Time: 6 minutes

Understanding Solenoid Valves

Solenoid Valve Basics

Solenoid valves are electromechanical devices used to control the flow of fluids or gases in various industrial applications. They consist of an electromagnetic coil which, when electrically activated, moves a plunger to open and close internal valves. This mechanism allows for precise regulation of pressure, speed, and volume of the fluid passing through (Valves Actuator).

The operation of a solenoid valve is based on electromagnetism. When an electric current runs through the coil, it creates a magnetic field. This magnetic field attracts the plunger, causing internal valves to either open or close depending on the direction of the current flow.

In the energized (open) state, the current flowing through the coil moves the plunger, opening internal valves and allowing fluid or gas to flow through. Conversely, in the de-energized (closed) state, the absence of current keeps the internal valves closed, blocking the flow of fluid or gas.

Importance of Solenoid Valves

Solenoid valves are crucial in various applications due to their ability to offer quick response times and precise control. The plunger in a solenoid valve can move from open to close in as little as 0.1 milliseconds, enabling efficient management of fluid flow in numerous settings.

These valves are widely used in agriculture for crop spraying, where precise control over fluid flow is essential. For example, they help regulate the distribution of pesticides and fertilizers, ensuring optimal coverage and minimizing waste. Solenoid valves are also found in automatic sprinkler systems, inkjet printing, medical devices, and even satellite propulsion.

To better understand the role of solenoid valves in crop spraying, consider how they control the flow of chemicals. By accurately opening and closing at the right times, they help distribute chemicals evenly across your fields. This precise control not only improves crop health but also reduces the amount of chemicals needed, lowering costs and environmental impact. For more insights on what triggers a solenoid valve, explore our detailed guide.

ApplicationFunction
Crop SprayingPrecise distribution of pesticides and fertilizers
Automatic SprinklersControlled water flow for irrigation
Inkjet PrintingAccurate ink flow for printing
Medical DevicesRegulation of fluids in medical equipment
Satellite PropulsionControl of fuel flow in space

By understanding the basics and importance of solenoid valves, you can make informed decisions on integrating them into your agricultural practices, ensuring efficient and effective crop management. For further reading, check out our articles on solenoid valves and their various applications.

Types of Solenoid Valves

Selecting the appropriate solenoid valve for your crop spraying system can significantly impact its efficiency and reliability. Understanding the different types of solenoid valves will aid you in making an informed decision.

Direct-Acting Solenoid Valves

Direct-acting solenoid valves are known for their simplicity and straightforward operation. These valves have a seat seal attached to the solenoid core. In the de-energized state, the seat orifice is closed, but when the valve is energized, the core and seal are pulled into the solenoid coil, opening the valve (Omega).

Direct-acting valves are available in two-way and three-way configurations. Two-way valves serve as shut-off valves with one inlet and one outlet port. In contrast, three-way valves have three port connections and two valve seats, providing more flexibility in fluid management (Omega).

FeatureDirect-Acting Solenoid Valves
Power ConsumptionHigh (Wikipedia)
Response TimeFast
Pressure SensitivityNot required
Clogging RiskLow

Direct-acting solenoid valves are reliable and quick to respond, making them useful in systems where immediate action is needed. However, their high power consumption can be a drawback in energy-sensitive applications.

Pilot-Operated Solenoid Valves

Pilot-operated solenoid valves, also known as indirect-acting valves, are designed for systems that require less energy consumption. These valves use a pilot valve to control a larger diaphragm or piston, which in turn opens or closes the main valve seat.

While pilot-operated valves are more energy-efficient, they depend on sufficient fluid pressure to function correctly. They can also be more susceptible to clogging if the fluid contains solid impurities.

FeaturePilot-Operated Solenoid Valves
Power ConsumptionLow (Wikipedia)
Response TimeModerate
Pressure SensitivityRequired
Clogging RiskHigh (Wikipedia)

Pilot-operated solenoid valves are ideal for applications where energy efficiency is crucial, but they require a clean fluid and sufficient pressure to operate effectively.

Understanding the differences between direct-acting and pilot-operated solenoid valves can help you determine which type best suits your agricultural needs. For more detailed information, visit our article on what triggers a solenoid valve. Additionally, explore other solenoid valves to find the perfect match for your crop spraying system.

Factors Affecting Solenoid Valves

Solenoid valves play a critical role in crop spraying, allowing precise control over the flow of liquids. Understanding the factors that affect solenoid valves can help you optimize their performance and ensure efficient operation.

Response Time of Solenoid Valves

The response time of a solenoid valve is the duration required for the valve to transition from an open to a closed position or vice versa. This time is crucial for applications requiring quick and accurate fluid control, such as crop spraying.

Factors Influencing Response Time:

  • Electrical Factors: The coil current must overcome the coil inductance, leading to a delay in the magnetic flux reaching its peak.
  • Mechanical Factors: The armature’s movement is affected by the magnetic force overcoming the spring force. Armatures with less mass move faster due to lower inertia.

Typical Response Times:

  • Direct-Acting Solenoid Valves: Approximately 30 milliseconds (Tameson).
  • Indirect-Acting Solenoid Valves: Up to 1000 milliseconds or higher (Tameson).
Valve TypeResponse Time
Direct-Acting Solenoid Valves30 ms
Indirect-Acting Solenoid ValvesUp to 1000 ms

For applications like crop spraying, where precise control is paramount, understanding these response times can help you select the right solenoid valve. Learn more about what triggers a solenoid valve.

Influence of Valve Design

The design of a solenoid valve significantly impacts its performance and suitability for various applications.

Key Design Factors:

  • Plate Material: Different materials affect the durability and efficiency of the valve.
  • Valve Size: Larger valves may have slower response times due to increased mass and inertia.
  • Valve Type: Direct-acting valves typically react faster than semi-direct or indirect-acting valves.

Example of Design Influence:

  • Electric Ball Valves: Used in HVAC or irrigation, these have response times in the order of a few seconds, reducing the risk of water hammer.
  • Solenoid Valves: Offer quicker response times, which might lead to water hammer in certain applications (Valves Actuator).
Valve TypeResponse TimeRisk of Water Hammer
Electric Ball ValvesFew secondsLow
Solenoid Valves0.1 millisecondsHigh

Understanding these design factors can help you choose the best solenoid valve for your crop spraying needs. For additional insights, visit our page on solenoid valves.

Applications of Solenoid Valves

Solenoid valves are versatile components used across various fields due to their ability to control the flow of fluids and gases with precision. In this section, we will explore the industrial and agricultural applications of solenoid valves.

Industrial Applications

In industrial settings, solenoid valves are essential for controlling the flow of liquids and gases in automated systems. These valves are used in a variety of applications:

  • Automatic Sprinkler Systems: Solenoid valves are integral to automatic sprinkler systems, where they control the flow of water to different zones, ensuring efficient irrigation.
  • Inkjet Printing: In inkjet printers, solenoid valves dispense precise droplets of ink, enabling high-quality printing.
  • Medical Devices: Solenoid valves control the flow of fluids in medical devices, such as ventilators and infusion pumps, ensuring accurate and safe delivery of medication.
  • Satellite Propulsion: Solenoid valves regulate the flow of propellants in satellite propulsion systems, enabling precise control of satellite movement.
ApplicationFunction
Automatic Sprinkler SystemsControl water flow to different zones
Inkjet PrintingDispense ink droplets
Medical DevicesControl fluid flow
Satellite PropulsionRegulate propellant flow

For more detailed information on how solenoid valves function in these applications, visit our article on solenoid valves.

Agricultural Uses

In agriculture, solenoid valves play a critical role in improving efficiency and precision in crop spraying and irrigation systems. Here are some key agricultural applications:

  • Crop Spraying: Solenoid valves control the flow of pesticides and fertilizers in crop spraying systems, ensuring even distribution and minimizing waste.
  • Irrigation Systems: Solenoid valves manage the flow of water in irrigation systems, allowing for precise control of water distribution to crops.
  • Greenhouses: In greenhouse environments, solenoid valves regulate the flow of water and nutrients to plants, maintaining optimal growing conditions.
ApplicationFunction
Crop SprayingControl flow of pesticides and fertilizers
Irrigation SystemsManage water flow
GreenhousesRegulate water and nutrient flow

Understanding what triggers a solenoid valve is essential for optimizing their use in these applications. Solenoid valves can be triggered by various factors, such as electrical signals, pressure changes, or manual activation, enabling precise control of fluid flow in agricultural systems.

For more tips on improving your crop spraying techniques and selecting the right solenoid valves for your needs, check out our articles on solenoid valves and what triggers a solenoid valve.